

CS 492

Senior Design Project
Low Level Design Report

 Project Name: LikedIt

Students

Zeynep Hande Arpakuş - 21501525

Zeynep Ayça Çam - 21502269

Muhammet Said Demir - 21602021

Zeynep Nur Öztürk - 21501472

Elif Beril Şayli - 21502795

Supervisor

Hamdi Dibeklioğlu

Jury Members

Özcan Öztürk

Selim Aksoy

1. Introduction 3
1.1 Object design trade-offs 3

1.1.1. Space vs Time 3
1.1.2 Usability vs Privacy 4
1.1.3 Performance vs Privacy 4
1.1.4 Performance vs Functionality 4

1.2 Interface documentation guidelines 4
1.3 Engineering standards (e.g., UML and IEEE) 5
1.4 Definitions, acronyms, and abbreviations 5

2. Packages 5
2.1. Presentation Package 5

2.1.1. Controller Package 5
2.1.2. Model Package 6
2.1.3. Web View Package 7

2.2 Application Package 8
2.2.1. Storage Manager Package 8
2.2.2. Analysis Package 9
2.2.3. App Manager Package 9

2.3 Data Package 10

3. Class Interfaces 11
3.1 Model 11
3.2 View 13
3.3 Controller 15

4. Glossary 19

5. References 20

1

1. Introduction
Nowadays, human-computer interactions have been increasing rapidly. This

interaction creates new social environments for people to share their lives. “With the
advent of mobile applications and social websites such as YouTube, Vine, and
Vimeo, we have observed an increase in the number of online videos shared by
people expressing. To give you a better idea of how popular these websites are,
more than 300 hours of video is uploaded to YouTube every minute.” [1]. The
amount of users in these platforms increases attention from companies, clients, and
researchers. Creating and influencing people’s experiences has become a valuable
differentiation strategy for the owner of videos. Therefore, research data from these
platforms are necessary and attractive in today’s world.

The purpose of our Senior Design Project in Bilkent University Department of

Computer Engineering is to contribute research about human-computer interaction
when people watch online videos. We will capture physiological reactions in real-time
to accurately research how humans appreciate. One of the strongest indicators for
an understanding of appreciation is the human’s face. The facial expression
represents one of the most important non-verbal means of communication.

This application provides a feedback report to the video owner about how

much the other users liked or disliked the video scene by scene, where do the users
look at in the video mostly, which groups liked their video mostly. The application can
be used by every age, gender, and ethnic group who watches or records videos.
Furthermore, in our application, we recommend videos that users might like in the
future based on their reactions to the videos they watched.

1.1 Object design trade-offs

 1.1.1. Space vs Time
Our system analyzes the videos which are taking from users when they watch

videos. The system ends up having lots of frames to be analyzed at the end because each
video would be at most 5-10 minutes in length and 30-60 frames per second. Open Face
requires time to process user videos. During development, we tried to use optimal algorithms
and tools such as we prefer GPU processing instead of CPU processing to reduce time
consumption. Therefore, time optimization is our most fundamental goal. To minimize the
processing time of videos, on the server-side, we allocate lots of space in terms of memory
and disk.

2

 1.1.2 Usability vs Privacy
Our system provides two options for using our application. The first option is using

the cloud as a backend of our website, and the other one is using the local machine as a
backend. The first option provides easy use of the application since it does not require any
additional set up for application. However, if the user wants to use the cloud, he/she has to
accept to send his/her facial data(image) to other machines. The second option is using the
local machine as a backend of our website. In this way, facial data of users stay at a
personal computer and do not share with any other party. However, this option requires
additional setup before using the application, which can decrease the usability of our
application.

 1.1.3 Performance vs Privacy
As we mention in the 1.1.2, the system provides two option. If the user wants to give

priority to its privacy, it affects performance because operations are done by the user’s own
computer. Our installer downloads necessary programs to the user’s computer. There is a
difference between doing operations in the cloud and personal computers for performance
view. The cloud version is faster than the computer itself. So we allow users to choose its
trade-off.

1.1.4 Performance vs Functionality
Our system has a significant amount of backend. Therefore, we processed our

website with the MVC principle which directs our web page to the multi-page app rather than
a single-page app. The performance of the single-page app is faster than the multi-page app
and only the data is transmitted back and forth. However, the multi-page app can have
unlimited documentation as a backend. Therefore, because our site has many features, the
functionality of our program is better than a single-page app.

1.2 Interface documentation guidelines
In the documentation, all class names are singular and named with standard class

name form like ‘ClassName’. Also variable and method names follow the same form like
‘variableName’ and ‘methodName()’. The class’ descriptions follow the hierarchy as the class
name and its description, its properties, and the explanations, and finally, its methods and
explanations are listed. The detailed outline is provided below:

class RecommendedVideos

This class is created for recommending videos to the user according to the videos they
liked

Properties

public string userToken

3

Methods

public int[] findLikedVideosDB(String userToken): This method finds videos the user
watched and liked from the database and return their video ids as an array.

public int[] findRecommendation(int[] likedArr): In this method videos to recommend are
found according to videos in the likedArr list.

1.3 Engineering standards (e.g., UML and IEEE)
We followed the IEEE citation format for referencing our resources and UML design

principles for class descriptions and diagrams. [2]

1.4 Definitions, acronyms, and abbreviations

Term Definitions, acronyms, and abbreviations

Open Face OpenFace is an open-source toolkit for facial
analysis. OpenFace is a useful tool for computer
vision, machine learning, and affective computing
communities and will stimulate research in facial
behavior analysis an understanding[3].

MVC The Model-View-Controller (MVC) is an
architectural pattern that separates an application into
three main logical components: the model, the view,
and the controller. Each of these components are built
to handle specific development aspects of an
application. MVC is one of the most frequently used
industry-standard web development framework to
create scalable and extensible projects. [4]

GPU Graphics Processing Unit

CPU Central Processing Unit

UML
Unified Modeling Language

4

2. Packages
Our system is composed of 3 tier as packages. These packages consist of many

sub-packages.

2.1. Presentation Package

2.1.1. Controller Package
The controller package manages the client operations and the interaction between the client
and the server.

2.1.2. Model Package
The model package is the layer responsible for the main operations of our system. First of
all, it is responsible for getting the video from the client-side. Then it generates feedbacks by
analyzing the video. Finally, it sends the results to the client. And also manages the trending
and recommended videos.

5

2.1.3. Web View Package
View package handles all user interface related operations as showing feedbacks, playing
the videos, showing the profiles, and showing the main page.

6

2.2 Application Package

2.2.1. Storage Manager Package
 The storage manager is related to storage within the cloud. Relations that are about
storage files between cloud and web site are done in this package.

.

7

2.2.2. Analysis Package
The analysis manager has classes that are responsible for analyzing the face gestures of
the user and create feedback for video. It involves cloud interaction, model that analyse and
feedback class for showing results to the user.

2.2.3. App Manager Package
The app manager package classes are responsible for the general management of the
application. It creates a connection between different layers. It also creates a connection
between different classes.

8

 2.3 Data Package
Data package is related to whole data operations. The database class has a

connection with each class. Within every class, whole data operations are managed by itself
and this data package.

9

3. Class Interfaces

3.1 Model

class RecommendedVideos

This class is created for recommending videos to the user according to the videos they
liked

Properties

public string userToken

Methods

public int[] findLikedVideosDB(String userToken): This method finds videos the user
watched and liked from the database and return their video ids as an array.

public int[] findRecommendation(int[] likedArr): In this method videos to recommend are
found according to videos in the likedArr list.

class Videos

This class represents the videos watched from likedIt website. Inserting new videos to the
database or updating their feedbacks are done in this class.

Properties

public string userToken
public string videoLink
public int videoID
public string videoType
public int feedbackID
public double likeRate

Methods

public void insertVideoDB(String videoLink, String videoType): A new video watched from
the website for the first time, is inserted to the database with its YouTube link and its type
by this method.

public void updateVideoDB(int videoID, int feedbackID, double likeRate): This method
updates the feedback of a video in the database.

public void sendVideos(): This method is for sending the user video to the system if the
one wants to help to improve the system.

10

public void sendHeatMap(): This method sends the heatmap of the video to the manager
class for feedback.

public void sendLikeGraph(): This method sends the liking graph of the video to the
manager class for feedback.

public void sendScenes(): This method sends the scenes liked most of the video to the
manager class for feedback.

class TrendVideos

This method is created for finding the trend videos among the videos watched from likedIt
website.

Methods

public void calculateRates(): This method pulls liking rates of videos from the database

public void findTrends(): This method selects the trend videos and sends them to the
manager class.

class VideoCrawler

This class is for searching and pulling the video the user searched to the website.

Property

public int videoID

Method

public void searchAndGet (int videoID): This method is for searching and getting the video
the user wants

class User

This class represents the users of likedIt website

Properties

public string userName
public string userToken
public Videos[] histVideos
public Videos[] recomVideos
public Videos[] ownVideos
public string gMail

11

public RecommendVideos recVideos

Methods

public string login(): This method is for providing to user a login process

3.2 View

class Player

This class represents the frontend of video player

Properties

public YoutubePlayer Player

Methods

public void onYouTubeAPIReady(): This method is for connection with YouTube API.

public int getStart(): This method returns the time when the video is started.

public int getStop(): This method returns the time when the video is stopped.

public int getFinish(): This method returns the time when the video is finished.

class WatcherResultPage

This class represents the frontend of the feedbacks coming from the manager class

Methods

public void showHeatMap(): This method is for handling the frontend of the
showHeatMap() method of the Manager class for the viewer of the video.

public void showLikeGraph(): This method is for handling the frontend of the
showLikeGraph() method of the Manager class for the viewer of the video.

public void showScenes(): This method is for handling the frontend of the showScenes()
method of the Manager class for the viewer of the video.

public void showFeedbacks(): This method is for handling the frontend of the
showFeedbacks() method of the Manager class for the viewer of the video.

12

class MainPage

This class handles the frontend of the main page.

Methods

public void search(): Handles the frontend on the showSearchVideos method of the
Manager class. Shows the searched videos by specified properties.

public void showTrendings(): Handles the frontend on the showTrendVideos method of the
Manager class. Shows the trend videos by specified properties.

public void showRecommended(): Handles the frontend on the
showRecommendedVideos method of the Manager class. Shows the recommended
videos by specified properties.

public void signup(): Handles the frontend on the login method of the Manager class.

class UserProfile

This class takes the user’s profile ID

Methods

public void takeUserProfile(): Handles the extraction of the user’s profile for future uses.

class UploaderResultPage

This class handles the frontend of the feedback results to the owner (uploader) of the
video.

Methods

public void showHeatMap(): Handles the frontend on the showHeatMap method of the
Manager class. Shows the heatmaps of the video by specified properties.

public void showLikeGraph(): Handles the frontend on the showLikeGraph method of the
Manager class. Shows the like graphs of the video by specified properties.

public void showScenes(): Handles the frontend on the showScenes method of the
Manager class. Shows the most liked scenes of the video by specified properties.

public void signup(): Handles the frontend on the showFeedbacks method of the Manager
class. Shows the feedbacks of the video by specified properties.

13

class ViewController

This class represents the controller of the general frontend

Methods

public void getURL(): This method is for getting the URL of the video the user wants the
watch.

public File sendPages(): This method is responsible to process-related pages.

public void startServer(): This server is for starting the server’s working

3.3 Controller

class Manager

This class is the main manager class of the system. It controls the overall system and
implements the functionality between the user and the system.

Properties

public User user
public CloudInterface cloud
public VideoCrawler videoCrawler
public ProtocolAndCheckings checkings
public TrendVideos trends
public RecommendedVideos recommendeds
public FaceModel face
public Sharing sharing

Methods

public void login(): This method implements the login system by using Google
Authentication system.

public void showRecommendedVideos(): This method implements the recommended
videos to users basing on their data.

public void showTrendVideos(): This method implements the trend videos basing on the
trend videos around the world.

public void showSearchedVideos(): This method implements the searching algorithm by
using YouTube API.

public void doChecks(): This method is checking the promotions for camera and and data
usage by calling ProtocolsAndCheckings class.

14

public Feedback startAnalysis(): Starts the analyzation and take frames of the user and
sends them to cloud for proper processing.

public void showAnalysis(int feedbackType, int analysis): Shows the average summary of
every over who watched the video excluding their identity.

public void insertVideo(): This method is for inserting each new video to the database.

public void getUsersVideo(): Gets the video list published by the user.

public void getTrendVideos(): Gets the trend videos around the world.

public void getSearchedVideos(): Gets the videos found after search.

public void getRecommendedVideos(): Gets the recommended videos to user according
their specific data.

public void getHeatMap(int videoID, int feedbackType): Pulls the prepared heat map of the
users who watched the specific video to the manager class.

public void getLikeGraph(int videoID, int feedbackType): Pulls the prepared liking graph of
the users who watched the specific video to the manager class.

public void getScenes(int videoID, int feedbackType): Pulls the prepared the scenes most
liked by the user while the watching to the manager class.

public void showVideos(): This method is for showing the user’s video while the watching
to the user.

public void showFeedbacks(): Shows the feedbacks of the users who watched the specific
video to the owner of the video.

public void showHeatMap(): Shows the prepared heat map of the users who watched the
specific video.

public void showLikeGraph(): Shows the prepared liking graph of the users who watched
the specific video.

public void showScenes(): This method is for showing the scenes most liked by the user
while the watching as feedback.

public void finishAnalyzing(): Finishes the analyze and send data to make them a proper
feedback.

public void insertFeedbacks(Feedback viewer, Feedback owner): Inserts the feedback of a
video to the database with its type.

public void sharing(): Enables for user to share their analyzes by calling Sharing class.

15

class Analyzer

This class analyzes the video of the user and give results in real time, frame by frame.

Methods

public void analyzeResults(): This method analyzes the frames of video of the user by
using OpenFace library.

public void sendAnalysis(): This method sends the result of the analysis to the interface.

class Feedback

This class creates feedback of the video of the user from the analyze that comes from
Analyzer class

Properties

public string userToken
public int videoID
public int userType
public int feedbackID
public CloudInterface cloud

Methods

public void makeGraph(): Creates the graph of like percentage each second by using the
analyze.

public void makeHeatMap(): Creates heat map of user’s sight through the video. Contains
information about where the user looked at each second.

public void recommendScene(): By using the information of where user liked the most, the
method gives a recommendation to watch that part again.

public void sendFeedbacks(Feedback viewer, Feedback owner): Sends the feedback
created by the user to the video owner anonymously.

class CloudInterface

This class builds the interface between cloud and other classes and implements cloud
based methods.

Properties

public Analyzer analysis
public Feedback feedback

16

Methods

public void sendResults(): Sends the result data of the user video to the owner
anonymously.

public void sendAnalysis(): Sends the analysis of the user video to the Feedback class.

class ProtocolsAndCheckings

This class requests the necessary protocols and permissions from the user.

Properties

public bool cameraCheck
public bool camPermission
public bool signed

Methods

public void checkCam(): Checks if the user has a camera on their device or not.

public void getCamPermission(): Requests camera permissions from the user.

public void getSign(): Informs the user about the usage of their data and requests the
users permission.

class Sharing

This class handles the sharing of the analyze of the video.

Properties

public string userToken
public int videoID
public int analyzeID
public int platform

Methods

public void share(int platform, int videoID, int feedbackID): Shares the analyze of the user
of a specific video.

class FaceModel

This class uses OpenFace library to process the face of the user.

17

Properties

public string userToken
public int videoID
public int camID
public CloudInterface cloud

Methods

public void analyzeFace(): Analyzes the face of the user frame by frame by using the
OpenFace library and extracts the key points.

public void sendData(): Sends the key points data to the cloud.

18

4. Glossary
-A-
Analysis, 4: 8: 15: 16: 17
API, 12: 14

-F-
Facial, 2: 3: 4

-L-
LikedIt, 10: 11

-O-
OpenFace, 4: 16: 17: 18

-U-
UML, 4

-Y-
Youtube, 2: 10: 12: 14

19

5. References
[1] “Multimodal Sentiment Intensity Analysis in Videos: Facial Gestures and Verbal
Messages” Sentic.net, 2019. [Online]. Available:
https://sentic.net/multimodal-sentiment-intensity-analysis-in-videos.pdf [Accessed:
5- Oct- 2019].
[2] Pitt.libguides.com. (2020). LibGuides: Citation Styles: APA, MLA, Chicago,
Turabian, IEEE: IEEE Style. [online] Available at:
https://pitt.libguides.com/citationhelp/ieee [Accessed 9 Feb. 2020].
[3] Open Face”, 2019. [Online]. Available:
https://github.com/TadasBaltrusaitis/OpenFace [Accessed: 5- Oct- 2019].
[4] "MVC Framework - Introduction - Tutorialspoint", Tutorialspoint.com, 2020.
[Online]. Available:
https://www.tutorialspoint.com/mvc_framework/mvc_framework_introduction.htm.
[Accessed: 16- Feb- 2020].

20

https://sentic.net/multimodal-sentiment-intensity-analysis-in-videos.pdf
https://github.com/TadasBaltrusaitis/OpenFace

